Ch. 9 - Center of Mass \& Momentum

Dan Finkenstadt, finkenst@usna.edu

October 12, 2015

Main Point of Ch. 9 :

Momentum Conservation! $\overrightarrow{\mathbf{p}}=m \overrightarrow{\mathbf{v}}$

For a system with translational invariance,

$$
\overrightarrow{\mathbf{p}}_{i}=\overrightarrow{\mathbf{p}}_{f}
$$

$\star \quad m_{1} \overrightarrow{\mathbf{v}}_{1 i}+m_{2} \overrightarrow{\mathbf{v}}_{2 i}=m_{1} \overrightarrow{\mathbf{v}}_{1 f}+m_{2} \overrightarrow{\mathbf{v}}_{2 f} \quad \star$

Types of Collisions

1. inelastic collision most generic type; some energy lost
perfectly inelastic collision collide and stick,

$$
\therefore \overrightarrow{\mathbf{p}}_{1 i}+\overrightarrow{\mathbf{p}}_{2 i}=\overrightarrow{\mathbf{p}}_{f}
$$

$$
\stackrel{m_{\mathrm{w}}}{\stackrel{v_{\mathrm{i}}}{m_{\mathrm{b}}}} \square_{\mathrm{w}} \quad \stackrel{v_{\mathrm{f}}}{\infty} n_{1} \overrightarrow{\mathbf{v}}_{1}+m_{2} \overrightarrow{\mathbf{v}}_{2}=\left(m_{1}+m_{2}\right) \overrightarrow{\mathbf{v}}_{f}
$$

2. elastic collision momentum and energy are conserved; e.g., medium energv billiards

$$
\begin{aligned}
\overrightarrow{\mathbf{p}}_{1 i}+\overrightarrow{\mathbf{p}}_{2 i} & =\overrightarrow{\mathbf{p}}_{1 f}+\overrightarrow{\mathbf{p}}_{2 f} \\
K_{1 i}+K_{2 i} & =K_{1 f}+K_{2 f}
\end{aligned}
$$

Active Learning Exercise

Problem: Perfectly Inelastic Collision

Two boxes are on a horizontal, frictionless surface. The boxes are sliding toward one another and subsequently collide. If the boxes stick together, perfectly inelastically, what velocity has the 1 kg box after the collision?

Active Learning Exercise

Problem: Example:

A 6.0 kg rifle is suspended by two long strings as shown. The rifle is fired and the recoil results in the rifle swinging backward to a maximum height $h=0.040 \mathrm{~m}$. What is the speed of the 0.010 kg bullet?

Active Learning Exercise

Problem: Elastic Collision

Two boxes are on a horizontal, frictionless surface. The boxes are sliding toward one another and collide. If the collision is elastic, meaning energy is conserved, what velocity has the 1 kg box after the collision?

$9.8-2 \mathrm{D}$ Collisions

- 2D Collisions

$$
\begin{aligned}
\overrightarrow{\mathbf{p}}_{1 i}+\overrightarrow{\mathbf{p}}_{2 i} & =\overrightarrow{\mathbf{p}}_{1 f}+\overrightarrow{\mathbf{p}}_{2 f} \\
m_{1} \overrightarrow{\mathbf{v}}_{1 i}+m_{2} \overrightarrow{\mathbf{v}}_{2 i} & =m_{1} \overrightarrow{\mathbf{v}}_{1 f}+m_{2} \overrightarrow{\mathbf{v}}_{2 f}
\end{aligned}
$$

- Or in x, y-component form:
$m_{1} v_{1 i} \cos \theta_{1 i}+m_{2} v_{2 i} \cos \theta_{2 i}=m_{1} v_{1 f} \cos \theta_{1 f}+m_{2} v_{2 f} \cos \theta_{\& f}$
$m_{1} v_{1 i} \sin \theta_{1 i}+m_{2} v_{2 i} \sin \theta_{2 i}=m_{1} v_{1 f} \sin \theta_{1 f}+m_{2} v_{2 f} \sin \theta_{2 f}$

Active Learning Exercise

Problem: 2D Inelastic w/ angles

A bowling ball with mass $m_{1}=2.0 \mathrm{~kg}$ moving in the positive x direction with velocity $3.0 \mathrm{~m} / \mathrm{s}$ strikes a pin with mass $m_{2}=1.0 \mathrm{~kg}$. The pin is initially at rest. Immediately after the collision, the bowling ball has a velocity of $1.5 \mathrm{~m} / \mathrm{s}$ at an angle of 30° with respect to the x-axis. What is the y-velocity of the pin after collision?

9.4 - Momentum-Impulse Theorem

$$
\overrightarrow{\mathbf{J}}=\overrightarrow{\mathbf{p}}_{f}-\overrightarrow{\mathbf{p}}_{o}
$$

- Always valid, if impulse takes into account all forces
- Useful way to calculate change in direction
- $\overrightarrow{\mathbf{J}}$ refers to the impulse delivered to an object
9.4 - Impulse

$$
\begin{aligned}
\overrightarrow{\mathbf{J}} & =\int \text { Force } \cdot \mathrm{d} t \\
& =\text { Force } \cdot \text { time }
\end{aligned}
$$

Active Learning Exercise

Problem: Bounces, Recoils \& Rebounds

A 4.0 kg zombie head is moving horizontally with a speed of $5.0 \mathrm{~m} / \mathrm{s}$ when it strikes a vertical wall. The head rebounds with a speed of $3.0 \mathrm{~m} / \mathrm{s}$. What is the magnitude of the impulse delivered to the head?

9.1 - Center of Mass

- momentum is thought of as centered on a point
- this point may be on or near the object
- all other points rotate about the center of mass

Active Learning Exercise

Problem: Center of Mass

Four point masses are located at the corners of a square with sides 2.0 m , as shown. The 1.0 kg mass is at the origin. What is the vector location of the center of mass of the system?

9.1 - Center of Mass

- For n discrete particles the c.o.m. is located at

$$
\begin{aligned}
& x_{\mathrm{com}}=\frac{1}{M} \sum_{i=1}^{n} m_{i} x_{i}=\frac{m_{1} x_{1}+m_{2} x_{2}+\ldots}{m_{1}+m_{2}+\ldots} \\
& y_{\mathrm{com}}=\frac{1}{M} \sum_{i=1}^{n} m_{i} y_{i}=\frac{m_{1} y_{1}+m_{2} y_{2}+\ldots}{m_{1}+m_{2}+\ldots} \\
& z_{\mathrm{com}}=\frac{1}{M} \sum_{i=1}^{n} m_{i} z_{i}=\frac{m_{1} z_{1}+m_{2} z_{2}+\ldots}{m_{1}+m_{2}+\ldots}
\end{aligned}
$$

- Such series are called weighted average

9.1 - Center of Mass

Example:

Try this one!

Take $r=1$, so $m_{O}=\pi$

$$
\begin{aligned}
x_{\mathrm{com}} & =\frac{\pi(0)+\frac{-\pi}{4}\left(\frac{1}{2}\right)}{\pi-\frac{\pi}{4}} \\
& =-\frac{1}{8} \frac{4}{3}=-\frac{1}{6}
\end{aligned}
$$

